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We develop a series of molecular dynamics computer simulations of liquid water, performed with a polar-
izable potential model, to calculate the spinodal line and the curve of maximum density inside the metastable
supercooled region. After analyzing the structural properties, the liquid spinodal line is followed down to T
=210 K. A monotonic decrease is found in the explored region. The curve of maximum density bends on
approaching the spinodal line. These results, in agreement with similar studies on nonpolarizable models of
water, are consistent with the existence of a second critical point for water.
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I. INTRODUCTION

Liquid water behavior as a function of temperature and
pressure differs from that of most liquids. As a major ex-
ample, the presence of a line of maximum density �TMD
line� in the P-T phase diagram is most significant, as it di-
vides the entire P-T phase diagram into two regions with
remarkably different properties: The coefficient of thermal
expansion is negative on the low-temperature side of the
TMD line, while it is positive on the high-temperature side.
Similarly, several other thermodynamic and dynamical quan-
tities show peculiar properties. For instance, the isothermal
compressibility and heat capacity exhibit a minimum as a
function of temperature and show an anomalous behavior
more pronounced in the supercooled liquid state �1�. In fact,
when decreasing temperature, the coefficient of thermal ex-
pansion, the isothermal compressibility, and the constant-
pressure specific heat increase rapidly. These quantities ap-
pear to diverge at a temperature T�−45 °C if they are
extrapolated below the lowest temperatures at which they are
measurable �T=−42 °C at P=1 bar� �1�. The supercooled
region below T=−42 °C is experimentally unreachable due
to the strong tendency of water to crystallize. It is nonethe-
less believed that nucleation in supercooled water might be
due to the presence of impurities that drive the liquid toward
the more stable phase �2�. Therefore, the experimentally un-
reachable zone of supercooling is believed to be physically
significant. Measurements of the rate of evaporation on
amorphous water have in fact proved that the amorph can be
connected with normal liquid water by a reversible thermo-
dynamic path at atmospheric pressure �3�. Besides at ambient
pressure experiments have proven the existence of super-
cooled liquid water close to the glass transition temperature
�4�.

In spite of all the interest driven by these anomalies a
coherent theory of the thermodynamic and transport proper-
ties of supercooled water does not yet exist, also due to the
difficulties encountered in experiments.

Different thermodynamic scenarios have been proposed
through the years for the peculiar metastable behavior of
water �5�. Among these three of them have received great
attention in literature. The stability limit conjecture �SLC� is
the first scenario proposed. It attributes the anomalies of wa-
ter to the presence of a continuous retracing spinodal curve,
bounding the superheated and supercooled states. The spin-
odal, which represents the limit of mechanical stability of a
liquid, is hypothized to retrace to higher pressure values be-
low a temperature at which it intersects the locus of the TMD
�6,7�. The second critical point scenario �SCP�, based on
extrapolation of simulated data, ascribes the anomalous
properties of water to the presence of a metastable, low tem-
perature liquid-liquid critical point, associated with a phase
transition between a low-density and a high-density liquid
phase �8�. Experimental evidence of the existence of two
liquid phases compatible with a second critical point have
been presented �9�. The singularity free scenario �SF� ex-
plains the behavior of supercooled water with the presence of
anomalous fluctuations due to the hydrogen bonds and no
underlying singularity is invoked �10�. The SF assumes that
upon isobaric cooling the thermodynamic response functions
go through a maximum but remain finite. An anomalous in-
crease in isothermal compressibility, heat capacity, and ther-
mal expansion is explained by the existence of the density
maxima locus, which is negatively sloped in the P ,T plane
�2�. According to this scenario, no phase transition or critical
point occurs at low temperatures.

A fundamental role in the clarification of the scenario of
supercooled water is played by the study of the behavior of
the spinodal line, and its relation with the line of TMD. Due
to the limitations of the experiments in the supercooled
realm, in order to assess the different hypothesis numerical
studies have become of utmost importance. Many computer
simulation studies indeed have been performed with several
different water site models: ST2, TIP4P, SPC/E, and TIP5P
�11–16�. All these models do not take into account explicitly
the polarizability of the water molecules. Polarizable models
for water have also been developed �17–29� to give a more
realistic description of the behavior of the system in different
thermodynamic conditions. Depending on the zone of the
phase diagram investigated they have proven to equally or
more realistically describe the features of water. Studies of
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the behavior of the spinodal line for the polarizable water
model potential have never been carried out. It is therefore of
interest to study the behavior of the spinodal line for poten-
tials where polarizability is explicitly taken into account.

We present here a molecular dynamics study of the spin-
odal and the TMD line of supercooled water performed with
the polarizable potential, introduced in the literature by
Ruocco and Sampoli �22� and parametrized by Brodholt,
Sampoli, and Vallauri �BSV� �23�, the BSV potential. We
found that the BSV model is appropriate for our study since
it reproduces the thermodynamical properties of water in the
region of the gas-liquid coexistence better than other polar-
izable models over a broad temperature range �30�. It has
also been shown that within the BSV model the site-site
radial distribution functions are in good agreement with the
experimental data in a broader range of thermodynamical
conditions �31–35�.

In the next section we describe the computer simulation in
details. After presenting in the third section the structural
properties of the system upon supercooling, the behavior of
the spinodal and of the TMD lines are reported in the fourth
section. The last section is devoted to conclusions.

II. COMPUTER SIMULATIONS

We performed MD computer simulations of water with
model 4 of Ref. �23�. An induced polarizable dipole moment
P, located in the center of mass of the molecule, describes
the effect of the electric field of the environment on the mol-
ecules. The induced dipole pi=�Ei is calculated from the
local electric field Ei with an iterative procedure by assuming
an isotropic polarizability. The value of this polarizability is
fixed to the single molecule value �=1.44 Å3 �22�.

Each simulation is conducted in the NVT ensemble with
256 water molecules enclosed in a cubic box with periodic
boundary conditions. The simulations have been performed
with the minimum image convention and a cutoff of the in-
teractions at half of the box length. The long range part of
the electrostatic interactions is taken into account with the
reaction field method. Details of the extension of the reaction
field method to include polarization effects can be found in
Refs. �22,36�. The time step �t for the integration of the
molecular trajectories is fixed at 1 fs.

To analyze the phase diagram and the spinodal curve in-
side the metastable supercooled region we carried out iso-
thermal simulations for eight different temperatures: 350,
300, 280, 260, 240, 230, 220, and 210 K. For each tempera-
ture eight different densities are simulated, namely 1.05,
1.00, 0.98, 0.95, 0.90, 0.87, 0.85, and 0.83 g/cm3. The box
length L spans from L=19.39 Å to L=20.96 Å to cover the
range of investigated densities.

During equilibration the temperature is controlled via a
velocity rescaling procedure. Production runs are performed
in the microcanonical ensemble. For the temperatures and
the densities closer to the spinodal line the longest equilibra-
tion time required was of 5 ns.

In Tables I and II we report the temperatures, densities,
pressures, and internal energies of the simulations we have
performed.

III. STRUCTURAL PROPERTIES

Structural quantities have been calculated averaging from
a minimum of 2.5�103 configurations at T=300 K to a
maximum of 3�103 configurations at T=220 K, all equally
spaced and taken every 2 ps. We have calculated the site-site
radial distribution functions �RDF� g���r� to monitor the in-
ternal structure at every temperature. We report gOO�r�,
gOH�r�, and gHH�r� for T=300 K in Fig. 1 and gOO�r� for T
=220 K in Fig. 2 calculated at several densities. At T
=300 K the peak positions agree with the experimentally
measured structure of water �37�. Upon decreasing tempera-

TABLE I. Temperature, density, pressure, and internal energy of
the simulated state points.

T �K� � �g/cm3� P±�P �MPa� U±�U �kJ/mol�

350 1.00 100±2 −39.16±0.17

350 0.98 48±24 −39.03±0.18

350 0.95 −23±4 −37.63±0.04

350 0.90 −112±40 −37.28±0.04

350 0.87 −150±4 −36.34±0.18

350 0.86 −159±4 −36.65±0.06

350 0.85 −164±38 −36.52±0.06

350 0.83 −182±4 −35.58±0.04

300 1.05 121±5 −42.92±0.13

300 1.00 −22±3 −41.55±0.10

300 0.98 −72±10 −42.11±0.05

300 0.95 −128±20 −40.97±0.02

300 0.90 −207±37 −40.76±0.15

300 0.87 −240±37 −39.72±0.04

300 0.86 −243±25 −40.02±0.07

300 0.85 −238±5 −39.49±0.04

300 0.83 −230±6 −39.02±0.16

280 1.05 85±4 −44.10±0.14

280 1.00 −78±4 −43.25±0.04

280 0.98 −112±4 −43.77±0.08

280 0.95 −170±6 −42.56±0.06

280 0.90 −242±34 −42.77±0.06

280 0.87 −274±5 −41.62±0.09

280 0.86 −280±4 −41.71±0.10

280 0.85 −281±30 −41.06±0.12

280 0.83 −234±26 −41.57±0.11

260 1.05 42±36 −45.90±0.10

260 1.00 −97±7 −44.91±0.03

260 0.98 −132±5 −45.67±0.11

260 0.95 −200±7 −44.47±0.08

260 0.90 −285±7 −44.65±0.10

260 0.87 −312±27 −44.26±0.08

260 0.86 −300±21 −44.18±0.09

260 0.85 −270±30 −44.38±0.06

260 0.83 −216±28 −43.90±0.08
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ture the peaks remain at the same position and become
sharper. By varying the densities we do not observe very
large changes in the g���r� apart from an increase in the
height of the peaks, even when the system approaches the
spinodal line �see the next section�. This is an important test
to verify the absence of dishomogeneities or cavitation phe-
nomena close to the limit of mechanical stability. A further
check has been performed with the calculations of the local
density fluctuations. For this sake we have divided our simu-
lation box into 64 sub-boxes and calculated the average dis-
tribution functions of the local density �not shown�. In all

cases we do not find deviations from a Gaussian distribution
centered on the fixed density of the system.

A deeper insight in the local ordering of the atoms can be
achieved by calculating the coordination numbers. In the up-
per inset of Fig. 2 we show nOO, the coordination number of
the oxygens, as a function of �:

nOO = 4���
0

rmin

gOO�r�r2dr , �1�

where rmin is the value of the interatomic distance at which
the first minimum in gOO�r� is located. It is important to
observe the different behavior of nOO at the two temperatures
T=300 K and T=220 K on lowering the density. At T
=300 K for the highest density nOO is 5.2. This value is the

TABLE II. Temperature, density, pressure, and internal energy
of the simulated state points.

T �K� � �g/cm3� P±�P �MPa� U±�U �kJ/mol�

240 1.05 22±10 −47.09±0.08

240 1.00 −106±8 −46.81±0.06

240 0.98 −163±6 −47.48±0.09

240 0.95 −209±28 −46.52±0.06

240 0.90 −305±18 −46.87±0.14

240 0.87 −342±25 −45.82±0.08

240 0.86 −329±18 −46.23±0.06

240 0.85 −268±22 −45.78±0.07

240 0.83 −236±20 −46.42±0.08

230 1.05 6±4 −47.95±0.03

230 1.00 −135±5 −48.26±0.03

230 0.98 −204±27 −47.87±0.09

230 0.95 −217±8 −47.62±0.09

230 0.90 −325±24 −47.26±0.09

230 0.87 −336±20 −46.67±0.07

230 0.86 −330±10 −47.52±0.10

230 0.85 −337±17 −46.63±0.08

230 0.83 −257±23 −46.14±0.09

220 1.05 −39±33 −49.67±0.08

220 1.00 −90±15 −48.74±0.08

220 0.98 −170±25 −48.87±0.09

220 0.95 −219±5 −48.18±0.05

220 0.90 −335±24 −48.29±0.08

220 0.87 −327±26 −47.95±0.05

220 0.86 −339±14 −47.78±0.08

220 0.85 −305±11 −46.85±0.07

220 0.83 −229±26 −47.38±0.05

210 1.05 9±30 −50.09±0.09

210 1.00 −107±30 −49.71±0.07

210 0.98 −176±22 −49.53±0.08

210 0.95 −226±27 −49.150±0.08

210 0.90 −393±25 −48.88±0.15

210 0.87 −352±21 −48.39±0.09

210 0.86 −253±30 −49.10±0.11

210 0.85 −263±4 −47.56±0.08

210 0.83 −337±24 −47.86±0.08

FIG. 1. Site-site pair correlation functions of the BSV water at
T=300 K and densities �=1.00, 0.98, 0.95, 0.90, 0.87, 0.85, and
0.83. gOO�r� is in the main frame. The insets show gOH�r� and
gHH�r� starting from the top.

FIG. 2. Pair correlation function gOO�r� at T=220 K and the
same densities as Fig. 1. In the inset on top is the number of nearest
neighbors nOO as a function of � for T=300 K �full squares� and
T=220 K �full circles�; in the inset below is the value of the first
minimum of gOO�r�, g�rmin�, as a function of � at T=300 K �full
squares� and T=220 K �full circles�.
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signature of an open network of water, where interstitial mol-
ecules are also present �33�. nOO then decreases until it
reaches the limiting value of 4 characteristic of the local
tetrahedral order. At the lower temperature T=220 K nOO is
found to be quite constant around the value of 4. These find-
ings indicate that the open network of H bonds becomes
better defined as � and/or T decrease.

In connection with the tendency of the H-bond network to
become more ordered a sharpening of peaks of the RDF is
expected. A quantitative measure of this sharpening can be
obtained looking at the value of the RDF at its first mini-
mum, g�rmin�. As a consequence we also expect to observe a
decrease of g�rmin� as the coordination shells become better
defined. In the lower inset of Fig. 2 we observe instead the
presence of a minimum in the behavior of g�rmin� as a func-
tion of the density. The minimum is more evident at T
=220 K. This effect evidences an important change in the
thermodynamical properties of the system, since it is related
to the behavior of the entropy in the vicinity of the spinodal,
as previously discussed in literature �11�. Therefore, we can
consider that the change of slope in the g�rmin� curve is a
signature of the system approaching the limit of mechanical
stability.

IV. SPINODAL LINE

The limit of the mechanical stability of a system can be
determined from a study of the isothermal compressibility. In
the space of variables identifying the thermodynamic state of
the system, in fact, the condition for the mechanical stability
is �2�

KT � 0, �2�

where KT is the isothermal compressibility defined as

KT =
1

�
� ��

�P
�

T

. �3�

In the phenomenological description of the liquid-gas transi-
tion, as given for instance by mean field theories like the van
der Waals equation, along an isotherm the limits of the me-
chanical stability are marked by the changes in the slope of
the PT��� curve. Therefore, from Eq. �3� it is found that the
crossing to unstable states with KT�0 takes place at singu-
larity points where KT diverges. The spinodal line is identi-
fied by these singularity points. In particular the point where
the minimum of PT��� is located represents the limit of sta-
bility of the superheated liquid and so it belongs to the liquid
branch of the spinodal.

We are interested here in the liquid spinodal which ex-
tends in the P-T plane below the liquid-gas coexistence into
the region of negative pressures. The liquid spinodal indi-
cates also the limiting values of tension for the existence of
an homogeneous fluid before phenomena-like cavitation take
place �2�.

The behavior of PT��� for the BSV water is shown in Fig.
3 for � ranging from 1.05 to 0.83 g/cm3. In the inset of Fig.
3 four isotherms are represented upon lowering the tempera-
ture from T=350 K to T=260 K. Isotherms from T=240 K

to T=210 K are shown in the main frame of Fig. 3. From
T=300 K to the lowest temperature investigated the PT���
curves exhibit a minimum in the simulated range of densi-
ties. The isotherms corresponding to lower temperatures
have larger fluctuations due to the influence of both the low
temperatures and the negative pressures. In order to better
follow the curves for the lowest temperatures shown in Fig. 3
we fitted the calculated points of the isotherms with a fourth-
order polynomial function. We observe however that due to
the fluctuations the fit systematically slightly overestimates
the values of the minima. Therefore, we will consider the
minima directly observed for the plot of the spinodal line.

Based on Eq. �2� the minima of the isotherms represent
the limit of stability of the superheated liquid and identify
the values of the pressure at the spinodal, Ps�T�. As T de-
creases, Ps�T� clearly shifts to larger values of �. This behav-
ior is similar to that observed for TIP5P �16� while for ST2
and TIP4P this shift is less evident �11�.

The resulting estimated liquid spinodal line Ps�T� is plot-
ted in Fig. 4. In the same figure also the P��T� isochores are
shown as obtained by the data set of Tables I and II. At least
down to the lowest investigated temperature, T=210 K, the
spinodal line is not retracing. In the SLC framework the
spinodal line is expected to become reentrant at the point
where it intersects the TMD line in the phase diagram. We
recall that this behavior is required if the TMD line has a
negative slope �7,11,39�.

Along the TMD line the coefficient of thermal expansion

�P =
1

V
� �V

�T
�

P

�4�

goes to 0. Since the thermal pressure coefficient 	V

FIG. 3. Isotherms �symbols� for densities ranging from 1.05 to
0.83 g/cm3. Errors are calculated with the method of statistical in-
efficiency �38�. In the inset temperatures range from 350 to 260 K.
In the main frame temperatures range from 240 to 210 K and lines
are fit with a fourth order polynomial function.
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	V = � �P

�T
�

V

�5�

is connected to the coefficient �P by the following relation

	V =
�P

KT
, �6�

the TMD points are on the line connecting the minima of the
estimated P��T� isochore for different �.

According to Fig. 4, as � decreases, approaching the spin-
odal line, the isochores exhibit a minimum at smaller values
of T.

The isochore for the lowest reported density �
=0.90 g/cm3 does not show any minimum in the range of T
investigated where instead the minima for the other isoch-
ores are found. The TMD line does not approach the spinodal
line and at the lower T investigated it results in a positive
slope. This behavior of the TMD line prevents an intersec-
tion with the spinodal at negative P and low T, unless a
further change in the slope of the TMD line is hypothesized.

These results are in agreement with the findings of the
studies done on nonpolarizable models for water �11–16�. In
fact, for all these models the TMD line changes slope to
avoid intersection with a nonreentrant spinodal. Differences
among the models can be found in the values of pressures
and temperatures where the curves span. In particular, the
change of slope of the TMD line appears in our model at
negative pressures, P�−120 MPa, similar to SPC/E �15�,
P�−80 MPa, and to ST2 �11�. For TIP5P �16� the change of
slope appears at ambient pressure instead.

The most studied alternative to the SLC for explaining the
anomalies of water is the presence of a second critical point.
The SCP hypothesis �8,14� is based on the consideration that
in the glassy state two distinct types of structure are observed
�40�: The low-density amorphous ice and the high density
amorphous ice. This polymorphism of water would be ex-
tended into the liquid phase and it would emerge as a coex-

istence line between two liquid phases culminating in a sec-
ond critical point �41�. Computer simulation of waterlike
lattice models show evidence in fact of two immiscible liq-
uid forms of water �42–45�.

More recently several amorphous ice phases �46� have
been experimentally observed and signatures have been
found in computer simulation of the existence of several
liquid-liquid coexistences in supercooled water �47�. Also
Gibbs ensemble Monte Carlo �GEMC� studies on the BSV
water have found two liquid-liquid coexistence curves be-
sides the liquid-vapor equilibrium �30�. The liquid branch of
the gas-liquid coexistence curve obtained with the GEMC is
reported in Fig. 5, where we collect the relevant features of
the behavior of the BSV water in the �T ,�� thermodynamical
plane. The spinodal line obtained in the present work in the
supercooled region is compatible with the GEMC results.
The metastability region explored here comes very close to
the boundaries of the region where other phases of the liquid
water have been found.

V. CONCLUSIONS

We have done molecular dynamics simulation of super-
cooled water described with a polarizable BSV potential. The
aim of the paper was to calculate the behavior of the spinodal
line and of the TMD line down to the lowest possible tem-
peratures and pressures.

We have performed a structural analysis of water de-
scribed by the BSV polarizable potential in the region of the
supercooled liquid and we have found that the system
persists in an homogeneous phase down to T=210 K,
P�−390 MPa and this occurs for ��0.9. Signatures of the
presence of the mechanical stability limit are observed in the
behavior of the values of the RDF at the first minimum.

The boundaries of the liquid mechanical stability at low T
and negative P have been determined by the direct calcula-

FIG. 4. P��T� isochores for several values of � in g /cm3, spin-
odal line, and TMD curve. As � decreases, approaching the spinodal
line, the isochores exhibit a minimum at smaller values of T. The
spinodal line decreases upon lowering the temperature and no re-
tracing behavior is observed.

FIG. 5. Liquid branch of the coexistence curve obtained by
GEMC �30� �filled triangles� and the spinodal line of the present
work �black circles� in the T ,� plane for the BSV water. The dia-
mond represents the estimated gas-liquid critical point C. Portions
of the liquid-liquid coexistence regions are shown by the open tri-
angles �30�.
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tions of the liquid spinodal through the minima of the iso-
therms PT���. The line of the TMD in the same thermody-
namical region has also been detected from the minima of
the isochores P��T�.

We did not find any retracing of the spinodal line in the
investigated region while we observe a change of slope of
the TMD line which prevents for continuity a possible inter-
section of the TMD with the spinodal even down to lower T
and P. These results are in agreement with previous calcula-
tions done with nonpolarizable site potentials �11–16�. Our
analysis excludes indeed the possibility of the SLC scenario.

As a matter of fact, the absence of retracing of the spin-
odal is compatible however with both the SF interpretation
�10� and the possible existence of a second critical point �8�.
On the other hand, we have shown that the liquid spinodal
calculated in the present work is in agreement with the gas-
liquid coexistence curve obtained with the GEMC �30�.

Since in the GEMC there are clear indications of the exis-
tence of two liquid-liquid coexistence regions we can infer
that our results support the second critical point scenario.

The use of a polarizable potential in the present work has
given an answer to two important issues. The first is that
polarizable and nonpolarizable potentials are equally able to
describe an unique, and therefore likely, scenario for the
liquid-gas spinodal of supercooled water. This is an impor-
tant achievement as the parameters of these potentials have
been calculated through fit to experimental data performed at
ambient conditions. Therefore, the uniqueness of phase be-
havior far from these conditions reinforces the possibility
that these potentials are able to predict existing features of
water. The second is that the analysis performed with the
polarizable model can be extended in a different zone of the
phase diagram for determining the liquid-liquid spinodal and
indications about the second critical point location.
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